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Discrete Effects in Classical Mechanics

L. Renna'

Received September 26, 1990

By utilizing some results of discrete mechanics, effects related to the discretization
of the equations of motion of classical mechanics are analyzed. Some examples
of periodic motions are developed and it is shown that the discrete frequencies
are different from the continuous one. Numerical calculations involving orbits
are presented. A numerical algorithm, suggested by discrete mechanics, is com-
pared with conventional methods of second order.

1. INTRODUCTION

It is known that physical theories are normally formulated within the
space-time continuum using differential calculus. In recent years, however,
there has been a substantial growth of interest in discrete mechanics, where,
in contrast, it is assumed that time and length may be discrete variables.
The supposition that space-time has a discrete structure was often proposed
as a possible way for the elimination of the infinities inherent in conventional
quantum field theory (Toller, 1977). Many authors have developed various
methods of introducing quantized space-time into physical theory (Namsrai,
1985). Among these, Lee (1983) has suggested that there exists in nature
another fundamental constant, which can be regarded as the average space-
time spacing, and has proposed a new formulation of mechanics where
time is treated as a discrete dynamical variable.

Lee’s discrete formulation of mechanics finds its greatest applications
in quantum and relativistic mechanics, but it sufters from some inadequacies
in classical mechanics (D’Innocenzo et al., 1984). Nevertheless, it has been
shown (D’Innocenzo et al, 1984, 1987) that a simple modification of the
form of the discrete action eliminates some difficulties for the harmonic
oscillator, producing results which are in agreement with those of other
classical discrete models (LaBudde and Greenspan, 1974; Renna, 1987).
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Therefore, starting from Lee’s discrete mechanics model and from its
modified version, it is possible to examine in a fairly simple way some
effects due to discretization. Since the differential equations of continuum
theory are replaced, in discrete physics, with difference equations, only
numerical solutions are in general available. However, in some cases the
algebraic structure of the equations of motion is very simple and the search
for solutions sometimes demands only easy operations of an arithmetical
or numerical nature. Moreover, through the preservation of the validity of
the discrete conservation laws, it is possible to avoid instabilities in numerical
calculations. In addition to the physical intuition that can be gained from
these studies, there is the possibility not only of comparing different methods
of approximation in the solutions of differential equations by the solutions
of difference equations, but of suggesting some concrete improvements, too.

We introduce discrete classical equations of motion in Section 2. We
use them to resolve, in Section 3, the harmonic oscillator and show that
the discrete frequency is different from the continuous frequency. Next,
in Section 4, we make some observations about the form of the dis-
crete solutions for the motion of a particle on a circular orbit and subject
to the gravitational force. Finally, in Section 5, the numerical calcula-
tions for an elliptical motion are presented and a numerical method, sug-
gested by discrete mechanics, is compared with the second-order Taylor
approximation.

2. DISCRETE EQUATION OF MOTION

In discrete classical mechanics, the physical quantities and the con-
tinuous dynamical variables are replaced by a sequence of discrete values
that are functions of the discrete time ¢,, and the continuous equations of
motion by the proper corresponding discrete equations, so as to obtain the
fundamental conservation laws of physics. Of course, the discrete equations
must tend to the continuous ones when the discrete time steps At, =, — 1,
tend to zero. Nevertheless, there is a certain arbitrariness in defining discrete
physical quantities. The velocity can be defined, for small time intervals,
by approximating the path by straight lines

_l',, —Tn

t,— t1

Y, (1)
where r, =r(t,). In each tract of path, the potential V(r) can be defined in
an arbitrary point of the tract.

Let us consider a particle of mass m and subject to the potential V(r).
Different discrete models deal with different discrete Newton’s equations

corresponding to F= ma.
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In Lee’s discrete formulation of mechanics the classical action is
replaced by

N+1
Ag= % Gmv,—d V() + V() It — t,1) (2)
n=1
where N is the number of intermediate points between the initial and final
positions.
By setting
A,
—=0 3
o, (3)
and
A,
puialia 4
o, (4)
one finds the equations
Va+r1—Vy
T =—VV(r,) (5)
%(tn+1_tn~l) (
En E%mvi_’-%[ V(rn)+ V(rn—l)] = En+1 (6)

where V=4/ar, is the gradient operator. Equation (5) is the discrete
equivalent of Newton’s law, while equation (6) represents the law of
conservation of energy for discrete mechanics. In continuous mechanics
the energy conservation law is a consequence of Newton’s equations for
conservative systems, while in discrete mechanics these two are independent
and are obtained treating both r and ¢ as dynamical variables.

The system of equations (5) and (6) has simple analytical solutions for
the case V=0, which leaves undetermined the time intervals, and for the
case VV = const, which yields equal-time spacing, while it is hard to resolve
this system for more complicated potentials (except numerically). If we
consider, instead of action (2), the following discrete action (D’Innocenzo
et al., 1987)

N+ r,+r,_
Ad = Z I:E mvf,—V( 2 1)](tn_tn—1) (7)
n=1

from (3) and (4) we obtain
Vi1~ V¥, l'm_‘_rn—l Ly =1, l'n-i-1+rn)]
—=-V|V +V 8
" v — L [ ( 2 ) i1 1y ( 2 ( )

+r,_
E,=>mv’+ V(;) =E,., 9)
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This choice is dictated by the fact that equations (8) and (9) leave
unchanged the cases V=0 and VV = const, but lead to simple analytical
solutions with equal time spacings for the oscillator and smoother behavior
for other potentials compared to that of equations (5) and (6).

In what follows we consider equal time spacing ¢ = ¢, —#,_,. Thisis a
useful but inessential simplification for the aims of the present work.

3. THE HARMONIC UNIDIMENSIONAL OSCILLATOR

In order to show some typical distinctive feature of the discrete motion,
we consider simple problems whose solutions are periodic, such as the
harmonic oscillator.

For a unidimensional harmonic oscillator, V =3kx? equations (5) and
(6) become

X1 — 2%+ Xy = —w7&%x, (10)
E, =3muv, +3k(x,+x}_,) = E., (11)

where, as usual, w?=k/m.
The discrete equation (10) has the solution

x, = A cos vt,+ B sin vt, (12)
where t, = ne and
1 2 _2\1/2
v=-—arcsin[ws(l—w £ ) (13)
€ 4

is the discrete frequency, as one can easily verify by substituting equation
(12) into equation (10). The constants A and B depend on the boundary
conditions.

For small time intervals (¢ > 0) we have

2.2
[0 I 4

w1+
V“’( 24

>+ O(e" (14)

Thus, one sees that this discrete frequency is greater than the continuous
frequency w. As for the energy, one easily sees that, with » given by (13),
the discrete energy E, as given by (11) is not conserved, namely E, # E, ;.
The reason is that equation (12) is still the solution of equation (11), but
with a frequency » different from (13). In fact, imposing that E, = E, ., and
substituting (12) into equation (11), we obtain

we(1+w’e?/4)?
1+ w?e?/2

(15)

1 .
v =—arcsin
£
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For small time intervals this frequency can be approximated by (we omit
in the following terms of order &*)

v=w(l-35 w’e?) (16)

Thus, the frequency » of the solution of equation (11) is less than w,
contrary to the frequency of the solution of equation (10).

The numerical results of the motion of this discrete oscillator are
compared in Figure 1 with the continuous solution x = A cos wt+ B sin wt.
Circles and crosses represent equation (12) with v given by (13) and (15),
respectively. We have chosen the following numerical values: A=w =1.57,
B=0, £ =0.25.

We observe that, with regard to the methods of numerical calculation,
equation (10) represents nothing else than the Euler algorithm. Thus, we
argue that the Euler algorithm applied to a periodic motion yields a trajectory
with a period 7=27/v=T(1—7°£?/6T?) less than the continuous period
T=27/w.

Equations (10) and (11) are soluble separately, while the system formed
by these two has no analytical solutions. These equations descend from
equations (5) and (6), that is, from (2). The results are different if instead
we use equations (8) and (9), which descend from (7). For the harmonic
oscillator, equation (8) becomes

2.2
W €

4

xn+1_2xn+xn~l = (xn+l+2xn+xn~1) (17)

2.0 T T T

2003 2.0 4.0 5.0 8.0

Fig. 1. Discrete coordinates (circles and crosses) for the one-dimensional harmonic oscillator
compared with the continuous solution.
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Substitution of equation (12) into equation (17) leads to

wE

1Fwie?/a a®

v =— arcsin
£

i.e., for small time intervals,
v=w(l-50’e?) (19)

Again v is different from w, but this time the discrete energy (9) is
conserved, as oné can easily verify by substituting (12) with » given by (18)
into

1, 1 (x, +x,,“1>2 1, 1 (x,,+1+x,,)2
—muy,tok\———— ) =cmo, o k| 20
2 2 ( 2 27 " 2 (20)

We observe that in this case, as can be seen from (17), the force at x,
is weighted through the neighboring points x,.; and x,_, with twice the
weight for x,.

Thus, by choosing the action (7), one can see that the discrete har-
monic oscillator has discrete solutions given by (12), i.e., analogous to the
continuous solutions, but with a frequency » less than the continuous
frequency w.

4. DISCRETE CIRCULAR ORBITS

We now take up a problem with two degrees of freedom: a particle on
a circular orbit. Let r be the radius vector from some given origin of a
particle on a circular orbit and subject to the force

F=—c— 21)
r

Since the potential energy is V(r) = —c/|r|, equation (5) leads to

Y.’L_v"=_£r_;’ (22)
£ mr,
while equation (6) leads to
1, ¢f1 1 1, c(l 1)
i< (=t — ) =smvi, o —+= 23
2mv z(rn rn—l) 2mv i 2 LA rn ( )

where v, is again given by (1).
Since r, = r,+; = R, the discrete energy (23) is conserved (see Figure
2) and applying the procedures of the previous section, we have that the
solution of equations (22) and (23) is
r,, = R(cos »t,% +sin vt,§) (24)

where » is given by (13) with w?=c¢/mR’.
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Fig. 2. Discrete circular motion with ¢ = ve and & = 1. The vectors r,, are given by (24), apart
from an arbitrary phase.

We remark that (24) does not represent the general, discrete solution
of (22) and (23), because we have “forced” the particle to be on a circular
trajectory. The general solution, with the appropriate boundary conditions,
can be obtained only numerically. However, the circular orbit case is
interesting since we can derive the frequencies of the solutions of the discrete
equations of motion.

Similar results are obtained for equations (8) and (9), which now read

Vor1 7V c r,+r, Pt E,

LSS LT . 25
E m ['rn-‘}_rrIAIl3 ]rn+l+rn’3] ( )
| 2¢c | 2c

it - - _—— = 2
2™ e 2™ (26)

Solutions of (25) and (26) are still given (for circular orbits) by
(24), but with v given approximately by

v=w(l+50) (27)

This result can be obtained by observing that, with w>=c¢/mR?, any

component of (25), as for example the x component, becomes (Figure 2)
(1)28‘2

Ry ey +2x, +
4COS3((P/2) (xn+1 2xn xn—l) (28)

Xp1 = 2Xp + X =
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which differs from (17) only in the presence of cos*(¢/2), ¢ = ve, in the
denominator of the right member.

If the solution is given by the x component of (24), equation
(28) leads to

2.2
we
1—cos ve =——5——(1+ 29
ve 4005 (9/2) (1+cos ve) (29)
Taking as first approximation » given by (18), we have
2.2\ —3/2
3®_  3VE_ wE
cos 5 cos 3 (1 2 ) (30)

and substituting this value into (29), we obtain (27). Alternatively, we could
also look for a frequency » = w(1+ aw’s”) and substitute this directly into
(29) in order to obtain a =5/48.

Let us now consider the two-dimensional analogue of the linear oscil-
lator. Let a mass m be acted on by a force

F=—k,x%—k,yj (31)

If k, = k,, the trajectory can be a circle. It is straightforward to see that, in
this case, the discrete equations which descend from (5) and (6) still have
the solution (24) with frequency v given by (13), while the discrete equations
which descend from (8) and (9) have the solution (24), but with the frequency
v given by (18). Thus, in both the formulations of discrete mechanics which
correspond to the choice (2) or to the choice (7) of the discrete action the
two-dimensional harmonic oscillator has solutions with time intervals of
constant length.

5. NUMERICAL CALCULATIONS

Discrete mechanics can be used to improve the standard elementary
numerical methods. With regard to this point, Stanley (1984) has shown
that the more efficient second-order numerical method for resolving differen-

tial equations is the second-order Taylor approximation (STA)
Xpi1= X, + U,At +3a,Af°
Vg1 = vn+%(an+l+an)At (32)

which appears particularly convenient when used with a variable step At
The STA method can be improved by using some results of discrete
mechanics. As an example, we choose
Vpe1 =V, +a’At
Xn+1 :xn+%(vn+l+vn)At (33)
where aZ is the discrete acceleration, which depends upon the particular
model of discrete mechanics chosen.



Discrete Effects in Classical Mechanics 1007

In a previous paper (Renna, 1987) we have proposed a model of discrete
mechanics founded on a correspondence between analytical and discrete
Hamilton equations and on the definition of a proper discrete gradient,
thus retaining in a natural way symmetries and conservation laws. In
particular, the discrete energy coincides with the continuous energy at the
discrete physical point of the phase space. If the potential energy of a
particle of mass m is V(r) = —c/|r|, it has been demonstrated that the discrete
equations of motion become

Ty _rn__vn+1+vn

34

A 5 (34)

Yo+ '—vn= ___c_ I tr, (35)
£ m 1y F(Tuptr,)

These results are in agreement with the model of discrete mechanics
of Greenspan (1974). The discrete acceleration which we have used in the
subsequent numerical calculations is just taken from (35). The accuracy of
the numerical results is tested by comparing them with the analytical
solutions of continuous mechanics.

Implicit formulas such as (33) must be initialized using an explicit
method, such as, for example, the Euler method, but they can usefully be
utilized for minimizing the local error. In fact, an implicit method, although
it requires to be resolved recursively in most instances, maintains stability,
that is, ensures that errors in the approximate solution do not grow
exponentially.

Following Stanley, we have performed numerical calculations of a
highly eccentric orbit. We have compared STA with the discrete algorithm
(33) and with the same (33) iterated once. In Table I we report the relative
errors in y and in the energy E at the minor axis and in the period T, with
a fixed time step. Calculations are achieved with ¢/m=GM =1, for an
orbit with eccentricity e =0.9933 and initial conditions x,=—0.002 and
Yo= Vxo=0. In Table II the errors pertinent to the same methods but with
a variable time step, proportional to 7, are reported.

The results show that the discrete method (33) gives a better accuracy
than STA both with a fixed and with a variable step; moreover, they suggest
that (33) can be suitably iterated in order to reduce the errors.

By using a variable step Atcc /% we have continued the calculation
of the motion for 300 orbits. The last, 300th orbit is shown in Figure 3,
where the continuous curve represents the analytical solution of continuous
mechanics, while the dashed and dotted curves represent the orbits calcu-
lated with STA and with the discrete approximation, respectively. In the
inset of Figure 3 enlarged parts of trajectories are shown. We can see that
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Table 1. Relative Errors for an Orbit Calculation with Fixed Time

Step
Ayly AE/E AT/T
At (%) (%) (%)
4.0x107° 3.86% 7.43 12.29
0.60° 0.36 0.57
0.42¢ <1073 <107?
2.0x107¢ 0.98¢ 1.86 2.85
0.13° 0.05 0.07
0.11° <107 <10™*
1.0x107° 0.24° 0.46 0.70
0.03° <1072 <1072
0.03¢ <107° <10°

“STA.
®Discrete approximation.
‘Iterated discrete approximation.

Table II. Relative Errors for an Orbit Calculation with Variable Time

Step

Iterations

per orbit Ayly AE/E AT/T
(in thousands) (%) (%) (%)

3.5 0.63° 1.25 1.91
0.20° 0.08 0.12
0.16¢ <10™* <107
6.9 0.15° 0.31 0.47
0.04% 0.01 0.01
0.04¢ <107° <107
13.8 0.05¢ 0.09 0.12
0.01? <1073 <1073
0.01°¢ <1077 <107

“STA.
bDiscrete approximation.
“Iterated discrete approximation.
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Fig. 3. The calculation of the 300th elliptical orbit of high eccentricity (e =0.9933). The
theoretical orbit is shown by a solid line. The results of the second-order Taylor approximation
are shown as a dashed line, the discrete results as a dotted line.

the discrete formulas permit us to reproduce sufficiently well the exact
trajectory. The mean relative errors of this final orbit are (AE/E) = 0.06%
and (Ay/y)=2.55%. The “retard indicator” (t;g0—300T)/ T = —0.59 shows
an advance of more than half a period.

The mean relative errors of the 300th orbit calculated with STA are
(AE/E)=1.54%, (Ay/vy)=3.77%, while one has (t;50—300T)/ T = —4.38.

The calculations have been performed with about 5300 iterations per
orbit for the approximation (33) and with only about 2700 iterations for
the STA. The reason, however, is that the errors in STA grow if one increases
further the number of iterations.

6. CONCLUSIONS

We have shown, with some useful examples, that in the framework of
discrete mechanics it is possible, in a simple way, to bring out indications
on the effects of discretization in some interesting problems of classical
mechanics. The most evident effect regards the difference between the
discrete and the continuous frequencies. The calculated discrete solutions
are strictly related to the exact continuous solutions and conserve the discrete
energy and total linear and angular momentum. Hence, discrete mechanics
can be particularly useful in numerical calculations, as we have shown by
analyzing the motion of a particle subject to a gravitational force.

The extension of the numerical equations that we have obtained to
more complicated (many-body) systems is straightforward, thus allowing
the studies of phenomena of greater complexity.
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