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Discrete Effects in Classical Mechanics 
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By utilizing some results of discrete mechanics, effects related to the discretization 
of the equations of motion of classical mechanics are analyzed. Some examples 
of periodic motions are developed and it is shown that the discrete frequencies 
are different from the continuous one. Numerical calculations involving orbits 
are presented. A numerical algorithm, suggested by discrete mechanics, is com- 
pared with conventional methods of second order. 

1. I N T R O D U C T I O N  

It is known that physical theories are normally formulated within the 
space-time continuum using differential calculus. In recent years, however, 
there has been a substantial growth of  interest in discrete mechanics, where, 
in contrast, it is assumed that time and length may be discrete variables. 
The supposit ion that space-time has a discrete structure was often proposed 
as a possible way for the elimination of the infinities inherent in conventional 
quantum field theory (Toiler, 1977). Many authors have developed various 
methods of  introducing quantized space-time into physical theory (Namsrai ,  
1985). Among these, Lee (1983) has suggested that there exists in nature 
another  fundamental  constant, which can be regarded as the average space- 
time spacing, and has proposed a new formulation of  mechanics where 
time is treated as a discrete dynamical  variable. 

Lee's discrete formulation of  mechanics finds its greatest applications 
in quantum and relativistic mechanics, but it suffers from some inadequacies 
in classical mechanics (D ' Innocenzo  et al., 1984). Nevertheless, it has been 
shown (D ' Innocenzo  et al., 1984, 1987) that a simple modification of  the 
form of  the discrete action eliminates some difficulties for the harmonic 
oscillator, producing results which are in agreement with those of  other 
classical discrete models (LaBudde and Greenspan,  1974; Renna, 1987). 
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Therefore, starting from Lee's discrete mechanics model and from its 
modified version, it is possible to examine in a fairly simple way some 
effects due to discretization. Since the differential equations of continuum 
theory are replaced, in discrete physics, with difference equations, only 
numerical solutions are in general available. However, in some cases the 
algebraic structure of the equations of motion is very simple and the search 
for solutions sometimes demands only easy operations of an arithmetical 
or numerical nature. Moreover, through the preservation of the validity of  
the discrete conservation laws, it is possible to avoid instabilities in numerical 
calculations. In addition to the physical intuition that can be gained from 
these studies, there is the possibility not only of  comparing different methods 
of  approximation in the solutions of differential equations by the solutions 
of difference equations, but of  suggesting some concrete improvements, too. 

We introduce discrete classical equations of  motion in Section 2. We 
use them to resolve, in Section 3, the harmonic oscillator and show that 
the discrete frequency is different from the continuous frequency. Next, 
in Section 4, we make some observations about the form of the dis- 
crete solutions for the motion of a particle on a circular orbit and subject 
to the gravitational force. Finally, in Section 5, the numerical calcula- 
tions for an elliptical motion are presented and a numerical method, sug- 
gested by discrete mechanics, is compared with the second-order Taylor 
approximation. 

2. DISCRETE EQUATION OF MOTION 

In discrete classical mechanics, the physical quantities and the con- 
tinuous dynamical variables are replaced by a sequence of discrete values 
that are functions of  the discrete time t~, and the continuous equations of 
motion by the proper corresponding discrete equations, so as to obtain the 
fundamental conservation laws of  physics. Of course, the discrete equations 
must tend to the continuous ones when the discrete time steps Atn = tn - tn-1 
tend to zero. Nevertheless, there is a certain arbitrariness in defining discrete 
physical quantities. The velocity can be defined, for small time intervals, 
by approximating the path by straight lines 

r n - - r n _  1 
vn (1) 

tn--tn-1 

where rn----r(t~). In each tract of  path, the potential V(r) can be defined in 
an arbitrary point of the tract. 

Let us consider a particle of mass m and subject to the potential V(r). 
Different discrete models deal with different discrete Newton's equations 
corresponding to F = ma. 
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In Lee's discrete formulation of mechanics the classical action is 
replaced by 

N + I  
Ad ~, 1 2 = {~mv. -�89 V( r . )+  V(r.+,)]}(t. - t._,) (2) 

n = l  

where N is the number of  intermediate points between the initial and final 
positions. 

By setting 

OAd 
- 0  (3) 

Orn 

and 

one finds the equations 

OAd 
-- 0 ( 4 )  

Ot. 

Vn+ 1 - - V  n 
v v(~o) (5) m'~( tn+l - tn_,) - 

En-=~mv.+~[V(r.)+l 2 1 V(r._l)] = E.+I (6) 

where V-=0/0rn is the gradient operator. Equation (5) is the discrete 
equivalent of  Newton's law, while equation (6) represents the law of 
conservation of energy for discrete mechanics. In continuous mechanics 
the energy conservation law is a consequence of  Newton's equations for 
conservative systems, while in discrete mechanics these two are independent 
and are obtained treating both r and t as dynamical variables. 

The system of equations (5) and (6) has simple analytical solutions for 
the case V = 0, which leaves undetermined the time intervals, and for the 
case V V = const, which yields equal-time spacing, while it is hard to resolve 
this system for more complicated potentials (except numerically). If  we 
consider, instead of action (2), the following discrete action (D'Innocenzo 
et aL, 1987) 

A d = ~ l [ l m v 2 n - v ( r n ~ n - ' ) ]  (7) 

from (3) and (4) we obtain 

V~+l-V~ [ ( r n 2 ~ - l )  t~-/n-1 ( 2+r~) ]  (8) m - - -  V V ~-V r.+ 
t n + l  - -  tn I n +  1 - -  tn  

1 
E. -- ~ my 2 + V = E.+ 1 (9) 
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This choice is dictated by the fact that equations (8) and (9) leave 
unchanged the cases V = 0 and V V = const, but lead to simple analytical 
solutions with equal time spacings for the oscillator and smoother behavior 
for other potentials compared to that of equations (5) and (6). 

In what follows we consider equal time spacing e = t. - t ._l. This is a 
useful but inessential simplification for the aims of the present work. 

3. THE HARMONIC UNIDIMENSIONAL OSCILLATOR 

In order to show some typical distinctive feature of  the discrete motion, 
we consider simple problems whose solutions are periodic, such as the 
harmonic oscillator. 

For a unidimensional harmonic oscillator, V = �89 2, equations (5) and 
(6) become 

x,+l - 2x, + Xn_ 1 = --r (10) 

=-~mv,, +~k( x .  2 E, 1 2 1 2 + X n _ l ) =  En+ 1 (11) 

where, as usual, w 2= k/m. 
The discrete equation (10) has the solution 

where t, = ne and 

xn = A cos ~,t, + B sin ~,t. (12) 

 arcsin[o (, ~ ''2 ] 1 (13) 

i s the  discrete frequency, as one can easily verify by substituting equation 
(12) into equation (10). The constants A and B depend on the boundary 
conditions. 

For small time intervals (e ~ 0) we have 

[ co%2\ 
u = w ~  l + - ~ - )  + O(e') (14) 

Thus, one sees that this discrete frequency is greater than the continuous 
frequency w. As for the energy, one easily sees that, with ~, given by (13), 
the discrete energy E, as given by (11) is not conserved, namely En # En+l. 
The reason is that equation (12) is still the solution of equation (11), but 
with a frequency u different from (13). In fact, imposing that En = En+l and 
substituting (12) into equation (11), we obtain 

1 o~e(1 + r 1/2 
u = - arcsin (15) e l+w2e2 /2  
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For small t ime intervals this frequency can be approximated by (we omit 
in the following terms of  order e 4) 

v -~ ~o(1 -~4 oJee 2) (16) 

Thus, the frequency v of the solution of  equation (11) is less than ~o, 
contrary to the frequency of  the solution of  equation (10). 

The numerical results of  the motion of  this discrete oscillator are 
compared  in Figure 1 with the continuous solution x = A cos ~ot + B sin ~ot. 
Circles and crosses represent equation (12) with v given by (13) and (15), 
respectively. We have chosen the following numerical values: A = ~o = 1.57, 
B = 0, e = 0.25. 

We observe that, with regard to the methods of  numerical calculation, 
equation (10) represents nothing else than the Euler algorithm. Thus, we 
argue that the Euler algorithm applied to a periodic motion yields a trajectory 
with a period z = 27r/p = T(1 - ~ 2 e 2 / 6 T 2 )  less than the continuous period 
T = 2~/oJ. 

Equations (10) and (11) are soluble separately, while the system formed 
by these two has no analytical solutions. These equations descend from 
equations (5) and (6), that is, from (2). The results are different if instead 
we use equations (8) and (9), which descend from (7). For the harmonic 
oscillator, equation (8) becomes 

O)2e 2 
x.+l - 2x. + x._l = - - -  (x.+l + 2x. + x._~) (17) 

4 

Fig. 1. 
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1.0 x x 

x x x 

-1.0 X X X X X x 

-zo o.o 21o 41o 6'.o 8.0 
tn 

Discrete coordinates (circles and crosses) for the one-dimensional harmonic oscillator 
compared with the continuous solution. 

0.0 
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Substitution of  equation (12) into equation (17) leads to 

1 toe 
u = - arcsin (18) e 1 + w2e2/4 

i.e., for small time intervals, 

v = to(1 - ~2~o2e 2) (19) 

Again ~, is different from oJ, but this time the discrete energy (9) is 
conserved, as one can easily verify by substituting (12) with v given by (18) 
into 

l m v 2 + l  k(Xnq-X._l)2 1 2 1 

We observe that in this case, as can be seen from (17), the force at x. 
is weighted through the neighboring points x.+l and x._l with twice the 
weight for x. .  

Thus, by choosing the action (7), one can see that the discrete har- 
monic oscillator has discrete solutions given by (12), i.e., analogous to the 
continuous solutions, but with a frequency v less than the continuous 
frequency oJ. 

4. DISCRETE CIRCULAR ORBITS 

We now take up a problem with two degrees of  freedom: a particle on 
a circular orbit. Let r be the radius vector from some given origin of  a 
particle on a circular orbit and subject to the force 

r 
F = - c --r3 (21) 

Since the potential energy is V ( r ) = - c / I r l ,  equation (5) leads to 

u  - - u  C r n 
- -  ( 2 2 )  

E m r 3 

while equation (6) leads to 

l rnv• c ( l +  1 ) 1 2 c(1__1__+1) (23) 
- 2  -~, r._, =2 m v , + , - ~ k r . + l  r./  

where v. is again given by (1). 
Since r, = r,+l = R, the discrete energy (23) is conserved (see Figure 

2) and applying the procedures of  the previous section, we have that the 
solution of equations (22) and (23) is 

r .  = R(cos vt.~ + sin vt.fi) (24) 

where v is given by (13) with w 2= c/mR 3. 
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Fig. 2. Discrete circular motion with ~b = ue and e = 1. The vectors rn are given by (24), apart 
from an arbitrary phase. 

We remark that (24) does not represent the general, discrete solution 
of  (22) and (23), because we have "forced"  the particle to be on a circular 
trajectory. The general solution, with the appropriate  boundary  conditions, 
can be obtained only numerically. However,  the circular orbit case is 
interesting since we can derive the frequencies of  the solutions of  the discrete 
equations of  motion. 

Similar results are obtained for equations (8) and (9), which now read 

* ~ 1 7 6  r . + r . _ l  r . + l + r .  1 (25)  

m k l r . + r . - l l  
1 2c  1 2c  
_ 2 (26)  2 mvz" ] r . + r . - a ] - 2  rnv"+l I r .+ ,+r . ]  

Solutions of  (25) and (26) are still given (for circular orbits) by 
(24), but with u given approximately  by 

v ~  ~o(1 + ~ w 2 e  2 ) (27) 

This result can be obtained by observing that, with ~o 2= e / m R  3, any 
component  of  (25), as for example the x component ,  becomes (Figure 2) 

r ~ 
x . + l - 2 x . + x . - ~ -  4cos3(~o/2 ) (x .+l+2x .+x ._ l )  (28) 
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which differs from (17) only in the presence of c o s a ( t p / 2 ) ,  ~o = t 'e ,  in the 
denominator of  the right member. 

I f  the solution is given by the x component  of (24), equation 
(28) leads to 

(o2e 2 
1 - c o s  ve - 4  cos3(~p/2) (1 +cos  re) (29) 

Taking as first approximation v given by (18), we have 
O)2E2~ --3/2 

COS3 ~ 0  COS3/"E = ( 1 + - - /  (30) 
2 2 \ 4 /  

and substituting this value into (29), we obtain (27). Alternatively, we could 
also look for a frequency v = to(1 + ato2e 2) and substitute this directly into 
(29) in order to obtain oz = 5/48. 

Let us now consider the two-dimensional analogue of  the linear oscil- 
lator. Let a mass m be acted on by a force 

F =  - k l x ~ - k 2 y f i  (31) 

If  kl = k2, the trajectory can be a circle. It is straightforward to see that, in 
this case, the discrete equations which descend from (5) and (6) still have 
the solution (24) with frequency v given by (13), while the discrete equations 
which descend from (8) and (9) have the solution (24), but with the frequency 
v given by (18). Thus, in both the formulations of  discrete mechanics which 
correspond to the choice (2) or to the choice (7) of the discrete action the 
two-dimensional harmonic oscillator has solutions with time intervals of 
constant length. 

5. NUMERICAL CALCULATIONS 

Discrete mechanics can be used to improve the standard elementary 
numerical methods. With regard to this point, Stanley (1984) has shown 
that the more efficient second-order numerical method for resolving differen- 
tial equations is the second-order Taylor approximation (STA) 

xn+~ = xn + vnAt + l anAt2 
vn+l = vn +�89 + an)At (32) 

which appears particularly convenient when used with a variable step At. 
The STA method can be improved by using some results of discrete 

mechanics. As an example, we choose 

V,+l=Vn+adAt  

Xn+l : Xn _[ l(/.)n+ 1 .~_ 1)n)At (33) 

where a d is the discrete acceleration, which depends upon the particular 
model of discrete mechanics chosen. 
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In a previous paper  (Renna, 1987) we have proposed a model of  discrete 
mechanics founded on a correspondence between analytical and discrete 
Hamil ton equations and on the definition of  a proper  discrete gradient, 
thus retaining in a natural way symmetries and conservation laws. In 
particular, the discrete energy coincides with the continuous energy at the 
discrete physical point of  the phase space. I f  the potential energy of  a 
particle of  mass m is V(r) = -c/JrJ ,  it has been demonstrated that the discrete 
equations of  motion become 

rn+l--rn  Yn+l~Vn 

e 2 

Yn+l--u C r n + l + r  n 

e m ~+lrn(~+lWrn) 

(34) 

(35) 

These results are in agreement with the model of  discrete mechanics 
of  Greenspan (1974). The discrete acceleration which we have used in the 
subsequent numerical calculations is just taken from (35). The accuracy of  
the numerical results is tested by comparing them with the analytical 
solutions of  continuous mechanics. 

Implicit  formulas such as (33) must be initialized using an explicit 
method,  such as, for example,  the Euler method,  but they can usefully be 
utilized for minimizing the local error. In fact, an implicit method, although 
it requires to be resolved recursively in most instances, maintains stability, 
that is, ensures that errors in the approximate  solution do not grow 
exponentially. 

Following Stanley, we have performed numerical calculations of  a 
highly eccentric orbit. We have compared STA with the discrete algorithm 
(33) and with the same (33) iterated once. In Table I we report the relative 
errors in y and in the energy E at the minor axis and in the period T, with 
a fixed time step. Calculations are achieved with c / m  = G M  = 1, for an 
orbit with eccentricity e =0.9933 and initial conditions Xo = - 0 . 0 0 2  and 
yo = Vxo = 0. In Table I I  the errors pertinent to the same methods but with 
a variable time step, proport ional  to r, are reported. 

The results show that the discrete method (33) gives a better accuracy 
than STA both with a fixed and with a variable step; moreover,  they suggest 
that (33) can be suitably iterated in order to reduce the errors. 

By using a variable step A t o c  r 3/2, we have continued the calculation 
of  the motion for 300 orbits. The last, 300th orbit is shown in Figure 3, 
where the continuous curve represents the analytical solution of  continuous 
mechanics,  while the dashed and dotted curves represent the orbits calcu- 
lated with STA and with the discrete approximation,  respectively. In the 
inset of  Figure 3 enlarged parts of  trajectories are shown. We can see that 
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Tab le  I. Rela t ive  Errors  for  an  Orbi t  Ca lcu la t ion  with Fixed T i m e  

Step 

Ay/y AE/E AT /T  
At (%) (%) (%) 

4.0 X 10 -6 3.86 a 7.43 12.29 

0.60 b 0.36 0.57 
0.42 c < 10 -3 < 10 -3 

2.0 x 10 -6 0.98" 1.86 2.85 

0.13 b 0.05 0.07 
0.11 c < 1 0  -4 < 1 0  -4 

1.0 • 10 -6 0.24" 0.46 0.70 
0.03 b < 1 0  2 < 1 0 - 2  

0.03 c < 1 0  5 <105 

STA. 
b Discrete  a p p r o x i m a t i o n .  

CIterated discrete app rox ima t ion .  

Tab le  II .  Relat ive Errors  for  an  Orbi t  Ca lcu la t ion  with Variable  T i m e  

Step 

I te ra t ions  

pe r  orbi t  Ay/y AE/ E A T~ T 
(in t housands )  (%) (%) (%) 

3.5 

6.9 

13.8 

0.63" 1.25 1.91 

0.20 b 0.08 0.12 
0.16 c < 1 0  -4 < 1 0  -4 

0.15 a 0.31 0.47 

0.04 b 0.01 0.01 
0.04 c < 10 -6 < 10 -5 

0.05 ~ 0.09 0.12 
0.01 b < 1 0  -3 < 1 0  -3 

0.01 c < 1 0  -7 < 1 0  -5 

a STA. 
b Discrete  a p p r o x i m a t i o n .  

Clterated discrete app rox ima t ion .  
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Fig. 3. The calculation of the 300th elliptical orbit of high eccentricity (e = 0.9933). The 
theoretical orbit is shown by a solid line. The results of the second-order Taylor approximation 
are shown as a dashed line, the discrete results as a dotted line. 

the  d iscre te  fo rmulas  pe rmi t  us to r e p r o d u c e  sufficiently well  the  exac t  
t ra jec tory .  The  mean  re la t ive  errors  o f  this  final orb i t  are (AE/E)= 0.06% 
and  (Ay/y)= 2.55%. The  " r e t a r d  i n d i c a t o r "  ( t 3 o 0 - 3 0 0 T ) / T  = - 0 . 5 9  shows 
an a d v a n c e  o f  more  t han  ha l f  a per iod .  

The  m e a n  re la t ive  er rors  o f  the  300th orb i t  ca l cu la t ed  with  STA are 
(AE/E) = 1.54%, (Ay/y) = 3.77%, whi le  one  has  ( t 3 o o - 3 0 0 T ) / T  = -4 .38 .  

The  ca lcu la t ions  have  been  p e r f o r m e d  with  a b o u t  5300 i te ra t ions  p e r  
o rb i t  for  the  a p p r o x i m a t i o n  (33) and  wi th  on ly  abou t  2700 i te ra t ions  for  
the  STA. The  reason ,  however ,  is tha t  the  errors  in STA grow if  one  increases  
fur ther  the  n u m b e r  o f  i te ra t ions .  

6. C O N C L U S I O N S  

We have  shown,  wi th  some  useful  examples ,  tha t  in the  f r a m e w o r k  o f  
d iscre te  mechan ic s  it is poss ib le ,  in a s imple  way,  to b r ing  out  ind ica t ions  
on  the effects o f  d i sc re t i za t ion  in some in teres t ing  p r o b l e m s  o f  c lass ical  
mechanics .  The  most  ev iden t  effect r egards  the  difference be tween  the 
d iscre te  and  the con t inuous  f requencies .  The  ca l cu la t ed  discre te  so lu t ions  
are  s tr ict ly re la ted  to the  exac t  con t inuous  so lu t ions  and  conserve  the  d iscre te  
energy and  to ta l  l inear  and  angu la r  m o m e n t u m .  Hence ,  d iscre te  mechan ics  
can  be  pa r t i cu l a r ly  usefu l  in numer ica l  ca lcu la t ions ,  as we have shown by 
ana lyz ing  the mo t ion  o f  a par t ic le  subjec t  to a g rav i t a t iona l  force.  

The  ex tens ion  o f  the  numer i ca l  equa t ions  tha t  we have o b t a i n e d  to 
more  c o m p l i c a t e d  ( m a n y - b o d y )  systems is s t ra igh t fo rward ,  thus  a l lowing  
the s tudies  o f  p h e n o m e n a  o f  grea ter  complex i ty .  
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